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SUMMARY
Evidence from seismology, geology, and geodynamic studies suggests that regional-scale
lower crustal flow occurs in many tectonic settings. Pressure gradients caused by mantle
processes and crustal density heterogeneity can provide driving force for lower crustal
flow. Numerically modeling such flow can be computationally expensive. However, by
exploiting symmetry in the physical system, it is possible to represent the vertical com-
ponent of flow in terms of its lateral components, thereby reducing the problem’s spatial
dimension by one. Here we present a mathematical formulation for flow in a viscous
channel below an elastic upper plate, which is optimized for solution by common nu-
merical methods. Our formulation drastically reduces the computational load required
to simulate lower crustal flow over large areas and long time scales. We apply this
model to two example problems, with and without an elastic upper plate, identifying
combinations of parameters that are capable of generating measurable geologic uplift.

Key words: Dynamics of lithosphere and mantle; Numerical approximations and
analysis; Composition and structure ofthe continental crust

1 INTRODUCTION

Metamorphic rocks derived from the middle and lower crust
are often highly deformed. The net strain of the viscous
crust must keep pace with the surface tectonic deformation
of faulted crust, and where rock viscosity is low, significant
additional flow may be driven by existing pressure gradients.
Laboratory experiments for viscous deformation of crustal
rock find a strong dependence on mineralogy, temperature,
presence of melt or a vapor phase, and rock fabric (Shinevar
et al. 2015; Strehlau & Meissner 1987; Treagus 2002; Vander-
haeghe & Teyssier 2001). Additional information on crustal
flow is derived from studies of seismic anisotropy (Chris-
tensen 1972; Lin et al. 2011; Castellanos et al. 2020), tectonic
behavior (Whitney et al. 2013; Stockmal et al. 1986; Clark &
Royden 2000), and lithospheric foundering (Morency & Doin
2004; Wang & Currie 2017; Göğüş & Ueda 2018). Most of
these studies, however, do not provide strong constraint on
strain magnitude.

A variety of situations can create conditions necessary
for crustal flow. Crustal motion beneath an ideal transform
creates no change in crustal thickness and no lateral varia-
tion in pressure occurs (Savage 2000). In contrast, zones with
tectonically forced convergence result in crustal thickening
and corresponding elevated crustal pressure (e.g. Jamieson
& Beaumont 2013). This pressure will tend to drive crustal
flow away from areas of thickened crust. Lower crustal defor-

mation is then a combination of tectonically forced thicken-
ing and a thinning driven by this zone of elevated pressure.
In an opposite fashion, low pressure beneath an extending
core complex will drive lower crust to flow into the zone of
thinning crust (Block & Royden 1990; Kruse et al. 1991;
Rey et al. 2009). Finally, any event that locally alters lower
crustal pressure will drive lower crustal flow even in absence
of externally driven tectonics. Examples include: foundering
of lower crust, creating a pressure drop (e.g., southern Sierra
Nevada [Le Pourhiet et al. 2006] and Wallowa Mountains
[Wang & Currie 2017]) magmatic crustal inflation, creating
a pressure increase (McQuarrie & Rodgers 1998); delami-
nation of mantle lithosphere, creating a pressure increase
due to dynamic uplift (Göğüş & Pysklywec 2008); and other
forms of mantle loading (e.g., sub-lithospheric load [Castel-
lanos et al. 2020]). Perhaps the strongest observational con-
straint on crustal flow comes from observations involving
rapid and well-dated modification to crustal density struc-
ture.

In the examples given above, a Poiseuille-like lower
crustal channel flow is established by the geologically cre-
ated pressure gradients. Below, we develop a formulation
to model the evolution of this flow in two or three dimen-
sions by integrating over depth to reduce the problem to
a respective one or two dimensions. Our approach assumes
lower crustal flow is locally Poiseuille (parabolic) in cross
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Figure 1. Schematic cross section of the “waterbed”
model for lower crustal flow. We model the lower crust as
a layer of Newtonian fluid with thickness 2h, overlain by an elas-
tic plate that is warped by displacement w, under an applied
overburden load, σ. Material properties are considered, includ-
ing: effective elastic thickness, Te, and Young’s modulus, E, of
the elastic upper crust; viscosity of the lower crust, η; and den-
sity of the mantle and lower crust, ρm and ρc, respectively.

section, but allows spatially variable channel thickness and
crustal viscosity.

We use our formulation for lower crustal flow in
two test examples. First, we model the 2-D flow excited
by an infinite-length tabular load, producing a transient
epeirogenic response. Our second example is a 3-D model
of lower crustal flow excited along a continental hot spot
track. This example is motivated by the well-documented
evolution of the Snake River Plain (McQuarrie & Rodgers
1998). Hot spot tracks afford good timing constraints on the
changing crustal load, and on the crustal deformation and
uplift at different ages since the hot spot passed.

2 “WATERBED” MODEL FOR LOWER
CRUSTAL FLOW

We consider two-layer crust floating isostatically on an invis-
cid mantle, as shown in Fig. 1. The upper crust is an elastic
plate, and the lower crust is a viscous channel. Variable load
is applied from above, representing heterogeneity within the
upper layer.

To eliminate dependence of the z direction, we assume
that state variables do not vary with depth, and that lateral
velocity of lower crustal flow is zero at the channel bound-
aries, implying a parabolic (plane Poiseuille) flow profile.
These assumptions enable us to parameterize Stokes equa-
tions based on channel thickness and mid-plane flow velocity,
reducing the spatial dimension of the mathematical formu-
lation by one.

2.1 Derivation

It is useful to conceptually divide the crustal flow model
into two subsystems: flexurally-supported isostastic balance,
and viscous fluid flow. The two components are coupled
through dynamic pressure within the lower crust. We will
present them separately for the purpose of demonstration,
although coupling between the two subsystems requires that
we consider them simultaneously when implementing nu-
merical solvers.

2.1.1 Isostasy & Flexure

To understand pressure in the lower crust, we need to bal-
ance forces acting on both the upper and lower boundaries of
the channel. Each is acted upon by different applied forces,
and both include variations in pressure within the lower
crust.

The upper boundary is acted on by three external
forces: stress due to elastic deformation of the upper plate,
gravitational potential of the topographic load, and overbur-
den applied by upper crustal heterogeneity and sedimentary
deposits.

We use a classical thin plate model (Reddy 2006) for
elastic stress in the upper crust, in which elastic displace-
ment is related to the plate’s material properties, geometry,
and applied stress, by the relationship

∇4w =
q

D
, (1)

where q is an arbitrary applied load, w is plate displacement
away from neutral, and D is flexural rigidity, defined as

D =
ET 3

e

12(1− ν2)
, (2)

for Young’s modulus E, effective elastic thickness Te, and
Poisson’s ratio ν.

Stress felt by the bending elastic plate is a combination
of lithostatic stress due to topographic load, ρcgw, and ap-
plied overburden, sigma. Therefore, the upper boundary of
the channel is described by the force balance,

D∇4w + ρcgw + σ = P, (3)

where P represents deviations in lower crustal pressure.
Equivalently, the channel’s lower boundary, which rep-

resents the Moho interface, experiences stress proportional
to its own relief, which is balanced by the channel’s dynamic
pressure,

(ρm − ρc)gZm = −P (4)

where Zm is elevation of the Moho. An elevated Moho must
be balanced by negative dynamic pressure within the chan-
nel, and vice versa.

Moho elevation can be expressed in terms of existing
variables, noting that by definition it lies below the channel’s
upper boundary w, separated by the lower crustal thickness
2h:

Zm = w − 2h. (5)

Force balance for the lower channel boundary can then be
written

P = (ρm − ρc)g(2h− w). (6)

Combining equations (3) and (6), we express the full
isostatic force balance in our system as

D∇4w + ρmgw + 2(ρc − ρm)gh = −σ. (7)

2.1.2 Flow

The remaining components of our model govern the viscous
flow field itself. We represent the lower crustal channel using
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a Newtonian Stokes model. Beginning with a general state-
ment of momentum balance in the absence of internal body
forces,

∇ · τ = 0, (8)

for stress tensor τ . Vectors are expressed in boldface, and
second-order tensors are underlined.

Assuming an incompressible Newtonian fluid, stress can
be expressed as a linear function of differential viscous shear
and isotropic pressure,

τ = ηε̇(u)− P I, (9)

for pressure P , viscosity η, identity tensor I, and symmetric
strain rate ε̇, and fluid velocity u. Strain rate is a function
of gradients in flow velocity:

ε̇ =
1

2

[
∇u+ (∇u)T

]
. (10)

In an incompressible fluid, continuity requires zero di-
vergence in the flow field,

∇ · u = 0. (11)

Combining equations (8)–(11), our flow laws can be rewrit-
ten

∇ · (η∇u)−∇P = 0 (12)
∇ · u = 0. (13)

Assuming the viscosity field is smooth relative to flow
(∇η � 1), we can bring it outside the derivative in equation
(12), and expand the governing equations to index notion,

η (ux,x,x + ux,y,y + ux,z,z)− P,x

η (uy,x,x + uy,y,y + uy,z,z)− P,y

η (uz,x,x + uz,y,y + uz,z,z)− P,z

 = 0 (14)

ux,x + uy,y + uz,z = 0, (15)

where subscripts represent vector component indices, and
commas indicate derivatives with respect to the following
index.

We now introduce the constraints that viscosity is con-
stant with depth, and that lateral velocity goes to zero at
the top and bottom of the lower crustal channel. These con-
straints require that the flow field follows a parabolic profile
with respect to depth. Using a layer-centered coordinate sys-
tem allows us to take advantage of the inherent symmetry
present in the system. We can therefore uniquely express the
3-dimensional flow in terms of a 2-dimensional vector field
U, where ui(z = 0) = Ui,

ui∈{x,y} =

(
1− z2

h2

)
Ui. (16)

Substituting equation (16) into equation (15) yields

uz,z =

(
z2

h2
− 1

)
(Ux,x + Uy,y), (17)

and therefore

uz =

∫ z

0

uz,zdz =

(
z3

3h2
− z

)
(Ux,x + Uy,y) . (18)

The full velocity field can then be expressed in terms of U:

u =


(
1− z2

h2

)
Ux(

1− z2

h2

)
Uy(

z3

3h2 − z
)

(Ux,x + Uy,y)

. (19)

Substituting equations (6) and (19) into (12), and eval-
uating the solution at z = 0, our governing flow laws reduce
to

η∇2U− 2η

h2
U+ (ρm − ρc)g∇(w − 2h) = 0 (20)

2.1.3 Time dependence

Time dependence enters the system through lower crustal
thickening and thinning. Solving equation (18) at the upper
channel boundary, we find

ḣ ≡ ∂h

∂t
= uz(z = h) = −2

3
h (∇ ·U) . (21)

Additional time dependence can be introduced by vari-
ations in the overburden load (σ), but we treat the applied
load as an independent variable, and not a coupled compo-
nent of our system of equations.

2.1.4 Scaling

Nondimensionalization narrows the parameter space of our
problem, eliminating redundancy when testing suites of mul-
tiple models. Scaling has the added benefit of coercing the
system of equations into a form that is more well condi-
tioned, and thus more efficiently solved by iterative linear
solver schemes, as discussed in Appendix A1.4.

We scale our model in terms of representative val-
ues: channel thickness h0, distance L0, viscosity η0, pres-
sure P0, and strain rate ε̇0. All variables and operators can
then be replaced by their dimensionless equivalents, indi-
cated by a prime (′) superscript: xi = L0x

′
i, h = h0h

′,
∇ = L−1

0 ∇′, η = η0η
′, P = P0P

′, U = h0ε̇0U
′, g = ε̇20h0g

′,
D = P0L

3
0D

′, w = h0w
′, σ = P0σ

′, ρm = P0 (h0ε̇0)
−2 ρ′m,

and ρc = P0 (h0ε̇0)
−2 ρ′c.

We arrange our governing equations in terms of two
dimensionless parameters:

Π =
P0

η0ε̇0
, (22)

γ =
h0

L0
. (23)

Equations (7), (20), and (21) can then be written

γD′∇′4w′ + ρ′mg′w′ + 2(ρ′c − ρ′m)g′h′ = −σ′, (24)

η′∇′2U′ − 2η′

γh′2U
′

+Π(ρ′m − ρ′c)g
′∇′(w′ − 2h′) = 0, (25)

dh′

dt′
+ γ

2

3
h′(∇′ ·U′) = 0. (26)

3 EXAMPLE MODELS

3.1 Two-dimensional model of time evolving flow

An exceptionally useful “natural experiment” is the creation
and development of continental hot spot tracks. These sys-
tems create a propagating heat source coincident with em-
placement of mid-crustal load. The dynamic response oc-
curs in a setting where crustal thickness and topographic
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Figure 2. Epeirogenic transients resulting from forced flow in
an isoviscous lower crust with no overlying elastic plate, as illus-
trated in panel A. A transient pulse of crustal thickening produces
long-wavelength epeirogeny that migrates over time. The speed
at which this topographic bulge travels depends most strongly
on the channel’s viscosity and thickness. A Monte Carlo suite of
models is presented in panel B, with warm colors representing
movement away from the applied load, and cool colors indicating
motion towards the load. Marker size indicates the peak uplift
rate reached during the course of the model, and models in which
no well-defined isolated uplift is detected are indicated with an
×.

evolution can be compared to the pre-hot spot crustal and
stratigraphic references.

Seismic imaging and gravity studies show that Yel-
lowstone’s Snake River Plain (SRP) contains an approxi-
mately 17km thick mid-crustal sill, overlain by about 5km
of sedimentary and volcanic basin fill. McQuarrie & Rodgers
(1998) propose that the SRP’s seismically-active periphery,
characterized by high topography (the so-called “tectonic
parabola”), is a result of accumulated lower crust that has
been ejected from below the SRP. Using results obtained by
Kruse et al. (1991) for the Basin and Range, they estimate
that in order to produce uplift on the length and time scales
applicable to the SRP, the lower crust must have a viscosity
of approximately 1017.

We construct a simple cross-sectional model using
length, mass, and time scales consistent with prior stud-
ies (McQuarrie & Rodgers 1998; Yuan et al. 2010). Our
model domain is 2,000km wide, with overburden stress
σ = 150MPa applied to a 100km region at its center. The
model runs over 10My of simulated time. For comparison
with prior studies, we omit elastic strength of the upper
crust, setting D = 0.

We run a Monte Carlo suite of similar models, varying
only viscosity and initial thickness of the lower crust. This
allows us to quantify the maximum surface uplift attained
during each model run, and the rate at which the location of
peak topography translates over time. Fig. 2 demonstrates

conditions under which lower crustal flow can produce dra-
matic changes in topography. These results are consistent
with prior studies, indicating a relatively narrow range of
parameter space in which the SRP’s observed 0.1–1mm/yr
uplift rates are possible.

McQuarrie & Rodgers (1998) interpreted similar evi-
dence as a constraint on Idaho’s lower crustal viscosity. How-
ever, the presence of an elastic upper plate likely plays a
significant role in shaping uplift around the SRP. Further
work is required to make definitive interpretations about the
nature of Yellowstone’s tectonic parabola. Our method pro-
vides means by which these prior studies can be extended to
more realistic scenarios, including the presence of an elastic
upper crust, and expansion to 3 dimensions.

3.2 Three-dimensional model of time evolving
flow with a propagating load

As a demonstration of the full capabilities of our model,
we present a fully 3-dimensional time-dependent model of
lower crustal flow beneath an elastic upper plate. Parameters
are chosen based on the model suite in section 3.1. Using a
model domain representing a square map area 2,000km ×
2,000km, we select representative quantities h0 = 5km, and
η0 = 1020Pa.s. Unlike the previous example, we incorporate
an elastic upper plate with Young’s modulus E = 70GPa,
elastic thickness Te = 12km, and Poisson’s ratio ν = 0.25.

Applied overburden stress in this model is meant to
approximate the geometry and magnitude of mid-crustal
magmatic intrusions along a continental hot spot track, in-
cluding sedimentary deposition within the subsided regions.
Overburden is added within a 100km-wide disk that prop-
agates across the model domain at 10cm/yr. A dense load
is left behind with a maximal magnitude of 150MPa, con-
sistent with the stress estimated by McQuarrie & Rodgers
(1998) for the eastern Snake River Plain.

Fig. 3 shows the resulting topography predicted by this
model after 5My. A prominent “wake” of topographic up-
lift is generated, running parallel with the path of hot spot
propagation. An arcuate region of uplift precedes arrival of
the emplaced load by approximately 100km, mostly owing
to the flexural strength of the upper plate. Animations of
these model results with alternate views, as well as all nec-
essary code and documentation to reproduce these models
are included in the online supplement to this paper.

4 DISCUSSION

4.1 Interpretation

The modeling framework presented here has several advan-
tages in terms of both efficiency and predictive power. Scal-
ing parameters introduced in section 2.1.4 can be powerful
tools for quantifying unconstrained properties of the crust
and lithosphere.

While γ is easily visualized as a physical aspect ratio
of the viscous channel, Π is not directly comparable to any
common or obvious dimensionless quantity. In more well es-
tablished terms, it can be expressed as a ratio between the
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fluid mechanical Bejan number, and the Reynolds number,

Π = (Be)(Re−1) =

(
ρh2P

η2

)(
η

ρhU

)
=

P

ηε̇
(27)

This combination is most easily interpreted as the ratio
between length scales of momentum diffusion and momen-
tum advection. In our case, Π−1 conceptually corresponds
to the ability of viscosity to support gradients in crustal
thickness. Systems where Π << 1 are capable of sustaining
substantial topographic relief at both the surface and Moho,
and solitary pulses of crustal thickening can be more pro-
nounced. Systems where Π >> 1 will more quickly adjust
to pressure gradients, and pulses of crustal thickening will
be more diffusive.

Similarly, large γ values are associated with diffusive be-
havior, while low γ values restrict and localize flow, enabling
sharp gradients in crustal thickness. Effects of variations in
each parameter are demonstrated in Fig. 2, where the x-axis
corresponds to Π−1, and the y-axis to γ.

Dimensional analysis using Π and γ becomes less effec-
tive in the presence of an elastic upper crust. Models with
substantial elastic strength may be dominated by the up-
per plate’s preferred flexural wavelength, rather than the
viscously-supported transient uplift demonstrated in section
3.1.

The time-dependent model described in section 3.2 il-
lustrates this effect, where the peripheral bulges lie par-
allel to the path of propagating intrusion, indicating that
the location of uplift does not shift substantially over
time. Flexurally-dominated models can also adjust instanta-
neously over long distances to localized changes in overbur-
den. This can generate features like the arcuate bulge ‘up-
stream’ of the propagating magmatic center, even in cases
where the overburden load moves substantially faster than
the crustal flow itself.

4.2 Efficiency

The modeling method presented here is based on the princi-
ple that lower dimensional models are inherently more effi-
cient than their higher dimensional equivalent. This is true
for two primary reasons: the inherent reduction in numerical
complexity afforded by requiring fewer mesh nodes, and re-
duced reliance on complexities like deformed mesh topology
or high viscosity gradients. Both of these considerations has
caveats that make the comparison slightly more complex.

While the specifics of any particular model comparison
can vary, it’s obvious that a 2D model has fewer mesh nodes,
and therefore fewer numerical degrees of freedom, than a 3D
model spanning the same spatial distances with equal res-
olution. Stated differently, increasing the spatial dimension
from 1D to 2D, for instance, will increase the number of
mesh nodes by approximately a power of 2: O(n2). Simi-
larly, moving from 2D to 3D scales with order O(n3/2).

However, fewer mesh nodes does not inherently result
in a simpler numerical system. In particular, it is worth not-
ing that in order to achieve the dimensional reduction, we
have added complexity to the governing equations by in-
creasing the differential order of the system from Laplacian
to biharmonic form. Ultimately, this has the effect of in-
creasing the number of equations being solved from 2 to 4,
and introducing new solution variables. Fortunately, adding

equations to our system increases the number of degrees of
freedom linearly, O(n), which grows much more slowly than
the polynomial growth associated with increased spatial di-
mensions.

Further, the reduced spatial dimension eliminates a
number of complexities that would otherwise prove challeng-
ing. In order to handle the changing thickness of the lower
crustal channel, the traditional implementation would re-
quire either Lagrangian deformation of the upper and lower
mesh boundaries, or to incorporate additional elements, in-
cluding the mantle lithosphere and the upper crust. The
first approach is not possible in most modeling frameworks,
and doing so would require extensive customization on top
of the underlying library. The second approach would intro-
duce high viscosity contrasts between the lower crust and
both confining layers. Large viscosity contrasts in fluid flow
models are known to produce numerical systems that con-
verge more slowly than isoviscous equivalents (Duretz et al.
2011).

4.3 Limitations

The efficiency gained by reducing the model’s spatial di-
mension comes at the cost of physical approximations in
the model variables.

Viscosity is naturally a function of depth within the
Earth’s crust, contradicting our assumption of a purely
parabolic flow profile. Observational constraints on the spe-
cific flow profile of the lower crust are weak, and therefore
it is challenging to assess the degree to which the model
assumptions hold true in any particular case. Seismic mea-
surements provide the best measure of crustal anisotropy
(Castellanos et al. 2020) but do not reveal the flow profile,
only an integrated view of mineral alignment across a broad
region.

For these reasons, it is best to interpret the model pa-
rameters in terms of their net impedance to flow. That is, the
rate of strain accumulation integrated through the complete
lower crustal column, for a given lateral pressure gradient.
The model’s viscosity can then be considered to represent
an integrated average, enabling interpretation of our model
results in the presence of non-parabolic flows. Care must be
taken to scale the model parameters accordingly, as the vol-
ume flux across a heterogeneous channel differs from that of
an isoviscous parabolic flow.

Our model also assumes that the lithosphere is always
in a state of isostatic equilibrium. Of course there are many
cases in which the lithosphere is out of isostatic equilibrium,
either because of recent tectonic deformation, or because of
mantle-derived vertical stresses, so called “dynamic topog-
raphy.”

Our assumption implies that pressure gradients are in-
duced only by an imposed overburden stress and variations
in gravitational potential energy due to thickening and thin-
ning of the crustal column. While deriving a mathemati-
cal formulation for the contribution of non-isostatic gravita-
tional potential energy is beyond the scope of this work, one
could be formulated and implemented with very few changes
to the methods presented here. Variations in mantle-derived
uplift could be expressed as perturbations to the pressure
field, and could be applied in practice by simply augment-
ing the external forcing term, σ.
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Figure 3. Simulation of lower crustal flow around the
Yellowstone hot spot demonstrates the predictive power of
our method for geologic systems. In this model, a propagating
source of magmatic activity produces a time-evolving domain of
increased overburden weight. The added load drives lower crustal
flow towards the margins, resulting in a similar uplift pattern
to the so-called “tectonic parabola” surrounding Yellowstone and
the Snake River Plain. The black contour lines indicate surface el-
evations predicted by our model in 50m increments. The model’s
total relief spans approximately 2km, greater than the ~1km ob-
served along the Snake River Plane. We attribute the difference to
surface processes which our model does not account for. Erosion
and deposition would tend to smooth the high frequency varia-
tions within the basin, reducing the overall amplitude of relief.

5 CONCLUSIONS

Opinions vary as to the importance and significance of lower
crustal flow excited by the presence of intra-crustal het-
erogeneity. Estimation of real-world pressure gradients is
straightforward and usually fairly accurate, given seismic
and petrologic data about the structure of the crust. Crustal
viscosity, however, is poorly constrained because of its sensi-
tivity to variations in composition and temperature, as well
as on the mineral fabric of crustal rocks. As a result, evidence
for significant crustal flow comes from the interpretation of
local topography, seismic imaging, and geologic mapping.

Compelling examples include core complexes (Whitney
et al. 2013), the Snake River Plain (McQuarrie & Rodgers
1998), Wallowa moat (Wang & Currie 2017; Castellanos
et al. 2020), and the Basin and Range (Block & Royden
1990; Kruse et al. 1991). The proposed regional-scale crustal
flow from Tibet to SE Asia (Royden et al. 1997) illustrates
the possible importance of this process over a distance of
>1000km.

When considering these effects in time-evolving sys-
tems, especially when the problem is three dimensional, nu-
merical simulations can become computationally expensive.
We develop and illustrate an algorithm to efficiently model
the instantaneous or time evolving lower-crustal flow in two
or three dimensions for situations that may have a complex
loading and rheologic structure and history.

6 DATA AVAILABILITY

The data underlying this article are available in the article
and in its online supplementary material. Any modifications
to the supporting code made subsequent to the publication
of this article will be available in its github repository at
https://github.com/jperryhouts/waterbottlemodel/.
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APPENDIX A: NUMERICAL
IMPLEMENTATION DETAILS

All code and documentation required to reproduce the mod-
els and convergence tests presented here can be found in the
online supplement to this paper.

A1 Implementation

The governing equations above can be solved with a variety
of techniques. Our model is implemented in C++, and based
on the deal.II finite element library (Bangerth et al. 2007).

A1.1 Nonlinearity

Interdependence of variables in equations (24) – (26) intro-
duces nonlinearities which must be considered when solving
the system. Our aim is to define a set of equations, which
can be represented as a matrix multiplication of form

Mx = b, (A.1)

where M is a matrix of linear operators, x is a vector of
solution variables, and b is a vector of source terms.

We handle nonlinearities in the governing equations by
selectively substituting variables with approximated values,
converging on an accurate solution through the Picard iter-
ative method. This requires imposing initial conditions, and
repeatedly updating substitution variables with values from
the most recent linear solution.

Choices about which variables to solve linearly and
which to iterate on, are mostly arbitrary from a mathemat-
ical perspective. We choose a combination of Picard sub-
stitutions that maximizes symmetry of our equations, thus
improving stability and efficiency of the linear solver.

First, we handle time dependence of equation (26) with
a backwards Euler scheme,

h ≈ hn + ḣ∆t, (A.2)

for current and previous half-thickness h and hn, respec-
tively. Substituting equation (26) into (A.2) produces a non-
linear function, which we linearize by substituting a system
variable h with an approximated solution, h̄. Dropping the
dimensionless ‘prime’ superscript notation, and rearranging
terms, we express our time stepping method as

h+∆tγh̄
2

3
(∇ ·U) = hn, (A.3)

Similarly, we introduce an approximated elastic flexure,
w̄, rewriting equations (24) and (25) as

η∇2U− 2η

γh̄2
U+ 2Π(ρc − ρm)g∇h

= Π(ρc − ρm)g∇w̄, (A.4)

γD∇4w + ρmgw = 2(ρm − ρc)gh̄− σ. (A.5)

We repeatedly solve the full system of equations during
each time step, updating the substitution variables with the
each new solution. This process is repeated until the solution
no longer changes significantly between iterations. Conver-
gence is measured using the L2 norm of difference between
the current and previous solutions

||Ψ− Ψ̄||L2 < ε, (A.6)

for the complete solution vector Ψ, and predefined toler-
ance ε. Tolerance values of ε ≈ 10−12 typically converge in
less than 10 iterations for simple cases, as demonstrated in
Fig. A1.

A1.2 Discretization

The finite element method offers a number of advantages
to solving elliptic partial differential equations in terms of
efficiency and accuracy. Further work on lower crustal flow
will likely require coupling these equations with geodynamic
models of mantle processes, which are frequently based on
the finite element method, themselves. We therefore chose
to base our implementation on deal.II, the finite element
library underlying the popular geodynamic framework, As-
pect (Kronbichler et al. 2012).

The governing laws formulated in equations (A.3) –
(A.5), can be grouped into two independent blocks, repre-
senting the subsystems defined in Sections 2.1.2 and 2.1.1.
The upper left block represents the coupled equations (A.4)
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Figure A1. Numerical convergence. Panel A demonstrates convergence of our model output to a known analytic solution. Both time
independent variables, U and w, demonstrate the expected quadratic convergence with respect to spatial resolution. The time dependent
rate of crustal thickening does not have an exact analytic solution, but our model does converge towards a first-order approximation
over the initial time step. Panel B demonstrates convergence across nonlinear iterations, for multiple steps in a time-dependent model.
Convergence is reached when the integrated difference between the current and previous solution falls below a predefined tolerance.
Because the model presented here approaches an equilibrium configuration over time, the initial residual decreases for later time steps.
Therefore, fewer nonlinear iterations are required in order to reach the desired tolerance.

and (A.3) for viscous flow, and the lower right block repre-
sents equation (A.5) for flexural isostasy.

The flow block presents a challenge for the finite element
method, because of its metaharmonic form. The finite ele-
ment method is not well suited to solving high order PDE’s,
but other methods exist to do this. The simplest approach is
by way of a secondary solution variable v, splitting equation
(A.5) into a “mixed” system:

γD∇2v + ρmgw = 2(ρm − ρc)gh̄− σ (A.7)

v −∇2w = 0. (A.8)

Both w and v can then be solved with traditional finite ele-
ment formulations, using linear basis functions and Dirichlet
boundary conditions.

A1.3 Mathematical symmetry

To improve stability and efficiency of linear solvers, it is ad-
vantageous to ensure that the operator matrix M in equa-
tion (A.1) is symmetric. Both the flexure and flow blocks
of our system, as defined above, are asymmetric. However,
because of our choice of Picard substitutions, they are only
asymmetric in scalar coefficients and not operators. Both
blocks can therefore be symmetrized by multiplying each
function by appropriate coefficients.

Rearranging terms to regain symmetry leads us to the
form of our equations which we ultimately implement in

code:

−ηh̄∇2U+
2η

γh̄
U+ 2Π(ρm − ρc)gh̄∇h

= Π(ρm − ρc)gh̄∇w̄, (A.9)

2Π(ρm − ρc)gh̄ (∇ ·U) +
3Π(ρm − ρc)g

γ∆t
h

=
3Π(ρm − ρc)ghn

γ∆t
, (A.10)

γD

ρmg
∇2v + w =

2(ρm − ρc)

ρm
h̄− σ

ρmg
, (A.11)

v −∇2w = 0, (A.12)

resulting in a linear system of form
A BT 0 0
B C 0 0
0 0 E I
0 0 I F



U
h
v
w

 =


G
H
J
0

 . (A.13)

It should be noted that equation (A.10) is only valid for
t > 0, and ∆t > 0, but because it is only an initialization
step, we can impose values for h, and effectively ignore equa-
tion (A.10), moving the second term from equation (A.9) to
the right hand side for that step.

A1.4 Solvers

The choice of linear solver method has an important im-
pact on the efficiency and accuracy of any numerical model.
Direct solvers offer the advantage of simple implementation
and guaranteed convergence, while iterative solvers are more
computationally efficient in most cases. The equations de-
scribed in section 2.1 can be solved in their original form
with a direct solver scheme, avoiding complexities of scal-
ing and symmetrization. However, direct solvers can become
very computationally expensive for 2D (pseudo-3D) models.
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The governing equations described here are challeng-
ing to solve with iterative methods for a number of rea-
sons. Notably, they are asymmetric in their original form,
as is addressed in section A1.3. They are also indefinite or
semi-definite in their weak form, and they tend to be ill-
conditioned, with eigenvalues spread across many orders of
magnitude. Fortunately, physical constraints such as h >> 0
and careful scaling parameters, as described in section 2.1.4,
can help ensure that our model remain well conditioned and
positive definite. Lastly, depending on model parameters,
it is possible to end up with zeros on the diagonal of the
system matrix, which precludes the use of most common
preconditioners.

An optimal solver would likely use the conjugate gra-
dient method with a model-specific block Schur precondi-
tioner. We will leave development of such a method for
future work. Rather, we have tested a variety of generic
preconditioner-solver pairs with a variety of different model
setups.

Most common preconditioners are automatically pre-
cluded from use, because of the possibility of zeros existing
along the system matrix diagonal. We found that an incom-
plete LU factorization (ILU) preconditioner works well in
our test cases.

We tested a variety of solvers, including the general
minimum residual method (GMRES), conjugate gradient
method (CG), and biconjugate gradient stabilized method
(BiCGStab). Of these, the combination of ILU precondi-
tioner and CG solver outperformed all other options in both
accuracy and efficiency.

Our model falls back to a direct solver scheme in cases
where the preconditioned CG solver fails to converge. In
our experience, this does happen on occasion, usually on
the first nonlinear iteration of a time step. The model seems
to usually recover on the subsequent iteration to a state in
which the CG solver successfully converges. We have not en-
countered models which consistently fail to converge, given a
relatively wide range of input parameters. Models which are
not properly scaled may be more prone to non-convergence
for the reasons discussed above.

A2 Validating numerical solutions

To validate that our code is accurately solving the governing
equations, we perform benchmark models in 1D, comparing
the results to analytically derived solutions. We generate
analytical benchmarks using the method of manufactured
solution. Choosing simple functions for w, U, and h allows
us to forward calculate forcing terms compatible with our
imposed solution. Applying the resulting terms to the right
hand side in our code enables direct comparison of our nu-
merical results with the expected solution.

We begin by applying simple uniform coefficients for
the state variables: Π = 1, γ = 1, ρm = 1, ρc = 0.85, g = 1,
D = 1, and h(t=0) = 1. We choose an analytic solution for
w that will be resolvable on even very coarse meshes:

w = 0.1 sin(2πx) + 1. (A.14)

Plugging equation (A.14) into (7) results in the forcing term

−σ = (1.6π4 + 0.1) sin(2πx) + 0.7, (A.15)

which we apply over a spatial domain of width 1.

Next, we choose an ansatz function for U, which leads
us to the compatible solution

U =
0.015

2π + π−1
cos(2πx). (A.16)

Imposing stress values from equation (A.15), constant
coefficients described above, and appropriate boundary con-
ditions, our solver should produce an approximation to equa-
tions (A.14) and (A.16) that improves with increasing mesh
refinement. Fig. A1 demonstrates the expected quadratic
convergence of our linear solver with respect to mesh refine-
ment.

We do not have an analytical solution for the full time-
dependent system of equations, but we can solve for crustal
thickening at t = 0:

ḣ(t=0) =
0.03π

2π + π−1
sin(2πx) (A.17)

After a single very small time step, δt, our model should
converge on the first order approximation

ḣ(t=δt) ≈ 1 + δt
0.03π

2π + π−1
sin(2πx). (A.18)

Convergence with equation (A.18) is demonstrated in
Fig. A1. Deviation from a simple convergence line can be
seen for high mesh resolution, because of inaccuracy intro-
duced by only considering a first-order approximation to the
exact solution.

A3 Time stepping

The backwards Euler scheme applied in equation (A.3) is
stable for large time steps, but overshoots are possible, and
time discretization must be good enough to capture the dy-
namics of changing overburden stresses. Time step size ∆t
is chosen to satisfy a Courant-Friedrichs-Lewy (CFL) con-
dition

∆t = Cmin

(
2RK

||χ||L∞(ΩK)

)
(A.19)

where RK denotes the radius of cell K. ||χ||L∞(ΩK) denotes
the L∞ norm of local rates of change over cell K, calcu-
lated as the maximum of either the fluid flow velocity U,
or crustal thickening ḣ. We set the stabilization parameter
C = 1.0 to balance computation efficiency and numerical
stability, while providing sufficient temporal resolution to
capture changes in external forcing.


